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Abstract. We study the decay rates and spectra of B → Λ p̄ π, Σ0 p̄ π, Σ− n̄ π, Ξ0 Σ+ π, Ξ− Σ0 π and
Ξ− Λ π modes in the factorization approach. The baryon pairs are produced through vector, axial vector,
scalar and pseudoscalar operators. Previous predictions, including ours, are an order of magnitude too small
compared to experiment. By incorporating QCD counting rules and studying the asymptotic behavior, we
find an earlier relation between the pseudoscalar and axial vector form factors to be too restrictive. Instead,
the pseudoscalar and scalar form factors are related asymptotically. Following this approach, the measured
Λ p̄ π+ rate (∼ 4.0 × 10−6) and spectrum can be understood, and Λ should be dominantly left-hand
polarized, while we expect B(Σ0 p̄ π+) � 1.6 × 10−6. These results and other predictions can be checked
soon.

1 Introduction

Several three-body baryonic B decays such as B̄ → D∗ p n̄
[1], p p̄ K [2] and D∗ p p̄ [3] have emerged recently, even
though there is only one single two-body baryonic mode
B̄0 → Λ+

c p̄ that is observed so far [4,5].
It has been argued that three-body baryonic modes

could be enhanced over two-body ones [6], by reducing
the energy release to the baryons via emitting a fast recoil
meson. One consequence is enhancement near the baryon
pair threshold in three-body modes. In our study of B0 →
D∗− p n̄ [7], assuming factorization, we obtained ∼ 60%
of the experimental rate from the vector current contri-
bution, and the decay spectrum exhibits such a thresh-
old enhancement. The same threshold enhancement effect
was predicted for the charmless ρ p n̄ mode [8], and, in-
terestingly, the newly and first ever observed charmless
baryonic mode B → p p̄ K showed a similar feature [2].
The measured decay rate can be understood to some ex-
tent [9] and the spectrum can be reproduced by using
the factorization approach and QCD counting rule argu-
ments [10]. Other charmless modes such as p p̄ π, Λ p̄ π,
Σ0 p̄ π have been studied by the factorization assumption
and B(Λ p̄ π+) = (3–5) × 10−7 and B(Σ0 p̄ π+) = (0.8–
1.8) × 10−6 were predicted [9,10].

Recently, Belle reported [11]

B(Λ p̄ π+) = (3.97+1.00
−0.80 ± 0.56) × 10−6, (1)

and B(Σ0 p̄ π+) < 3.8 × 10−6 at the 90% confidence level.
While the Λ p̄ π decay spectrum exhibits threshold en-
hancement as expected, the measured rate turns out to
be an order of magnitude higher than predicted [9,10].
Furthermore, previous predictions placed B(Σ0 p̄ π+) con-
siderably above B(Λ p̄ π+). If the factorization approach is
not to be abandoned, where could things go wrong?

We had noted that the B → Λ p̄ π+ mode is sensitive
to how one treats the vacuum to Λp̄ pseudoscalar matrix
element [10] under factorization. The analogous situation
for the meson case is known to be enhanced.

In this work, we revisit these two modes, as well as
some SU(3) related modes such as Σ− n̄ π, Ξ0 Σ+ π,
Ξ− Σ0 π and Ξ− Λ π. With the help of QCD counting
rules and taking into account the asymptotic behavior of
the baryonic form factors, we can now account for the ob-
served Λ p̄ π rate and spectra, where the Λp̄ production is
dominated by the pseudoscalar density. After improving
the situation for the Λ p̄ π rate, we study the Λ polar-
ization, which is known to be useful for constructing CP -
and T -violation observables [6]. We are able to make some
predictions as well.

Our formulation is given in the next section, followed
by results and discussion.

2 Formalism

Under the factorization assumption, the three-body bary-
onic B decay amplitude consists of two parts. For one, the
baryon pair is current-produced in association with a B to
meson transition. For the other, the B makes a transition
to a baryon pair and the recoil meson is current-produced
[10]. The B → p p̄ K mode receives both contributions,
but the Λ p̄ π+ mode, and analogously its SU(3) related
modes such as Σ0 p̄ π+, Σ− n̄ π+, Ξ0 Σ+ π+, Ξ− Σ0 π+

and Ξ− Λ π+, receive only the current-produced contribu-
tion. We shall apply the term “current-produced” to scalar
and pseudoscalar densities as well.

Take, for example, the B0 → Λ p̄ π+ decay. Under fac-
torization, the amplitude is [10]

M(Λ p̄ π+) =
GF√

2
〈π+|ūγµ(1 − γ5)b|B0〉
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×
{

(VubV
∗
usa1 − VtbV

∗
tsa4)〈Λp̄ |s̄γµ(1 − γ5)u|0〉

+2a6VtbV
∗
ts

(pΛ + pp̄)µ

mb − mu
〈Λp̄ |s̄(1 + γ5)u|0〉

}
. (2)

The baryon pair Λ p̄ is produced from vacuum through
s̄ γµ (γ5)u and s̄ (γ5)u operators, while the B0 to π+ tran-
sition is induced by ūγµb current.

Note that, from isospin symmetry, we have

〈π0|ūγµb|B−〉 = 〈π+|ūγµb|B0〉/
√

2,

hence M(Λ p̄ π0) = M(Λ p̄ π+)/
√

2. For these current-
produced modes, we have

B(B− → BB
′
π0) =

τB−

2 τB0

B(B0 → BB
′
π+), (3)

where τB0, B− are the B0 and B− meson lifetimes, and B
stands for some baryon.

The (axial) vector current-produced matrix elements
are decomposed as follows:

〈BB
′|Vµ|0〉 = (4)

ū(pB)
{
(F1 + F2)γµ +

F2(t)
mB + mB′

(
pB′ − pB

)
µ

}
v(pB′) ,

〈BB
′|Aµ|0〉 = (5)

ū(pB)
{

gA (t) γµ +
hA (t)

mB + mB′

(
pB + pB′

)
µ

}
γ5 v(pB′) ,

where F1,2, gA and hA are the induced vector (Dirac and
Pauli), axial and the induced pseudoscalar form factors,
respectively, and t ≡ (pB + pB′)2 ≡ m2

BB′ . The scalar and
pseudoscalar matrix elements associated with the a6 term
of (2) are expressed as

〈BB
′|S|0〉 = fS (t) ū(pB)v(pB′) , (6)

〈BB
′|P |0〉 = gP (t) ū(pB)γ5 v(pB′). (7)

It is the gP(t) form factor that is the focus of our attention,
where we offer a refined discussion faced with B → Λ p̄ π+

data.
The scalar and vector matrix elements can be related

by the equation of motion, 〈BB
′|∂µVµ|0〉 = i (mq − mq′)

〈BB
′|q̄ q′|0〉, giving [9,10]

fS(t) =
mB − mB′

mq − mq′
F1(t). (8)

We note that this is safe in the chiral limit mq, mq′ → 0,
and for mq → mq′ as well. For example, for 〈Λp̄|s̄u|0〉 we
have (mΛ − mp)/(ms − mu) ∼ 1. For the modes studied
here, the factor (mB − mB′)/(ms−mu) varies by 30, 40%,
which illustrates SU(3) breaking.

The pseudoscalar and axial current matrix elements
can be analogously related. Using 〈BB

′|∂µAµ|0〉 = (mq +
mq′)〈BB

′|q̄ i γ5 q′|0〉, we have

gA(t) +
t

(mB + mB′)2
hA(t) =

mq + mq′

mB + mB′
gP(t). (9)

As mq, mq′ → 0, we get hA(t) → −gA(t) (mB + mB′)2/t
[9]. Since the mq/mB ratio is small, one is close to the
chiral limit; hence the dependence of hA(t) on gP(t) is
weak.

However, to ensure good chiral behavior, we previously
followed [9] and took [10]

gP(t) = −gA(t)
m2

GB(mB + mB′)
(mq + mq′)(t − m2

GB)
, (10)

where mGB is the corresponding Goldstone boson (e.g.
kaon) mass. That is, gP(t) is obtained by changing the 1/t
term in the asymptotic form of hA(t) to 1/(t − m2

GB) and
make use of (9) [9]. Indeed, (10) gave too small a rate for
B → Λ p̄ π+ [9,10].

Due to the small quark–baryon mass ratio in (9), we
note that gA and hA are insensitive to gP. Therefore in
the previous approach we need very precise information
on both gA and hA, which is unavailable so far, to pinpoint
gP. In this work we choose a different strategy by studying
gA,P directly and obtaining hA through (9).

According to QCD counting rules [12], both the vector
form factor F1 and the axial form factor gA, supplemented
by leading logs, behave as 1/t2 in the t → ∞ limit. This is
because we need two hard gluons to impart large momen-
tum transfer. Similarly, considering the bilinear structure
of the S and P operators, the scalar form factor fS and
pseudoscalar form factor gP also behave as 1/t2 in the
asymptotic limit. However, due to the need for a helicity
flip, one needs an extra 1/t for F2 and hA; hence they
behave as 1/t3.

We see that (10) gives a 1/t3 rather than a 1/t2 asymp-
totic behavior for gP, which is symptomatic. In the elec-
tromagnetic current case, the asymptotic form has been
confirmed by many experimental measurements of the nu-
cleon (Sachs) magnetic form factor Gp,n

M = F p,n
1 + F p,n

2 ,
over a wide range of momentum transfers in the space-like
region. The asymptotic behavior for Gp

M also seems to hold
in the time-like region, as reported by the Fermilab E760
experiment [13] for 8.9 GeV2 < t < 13 GeV2. Another Fer-
milab experiment, E835, has recently reported [14] Gp

M for
momentum transfers up to ∼ 14.4 GeV2. An empirical fit
of |Gp

M| = Ct−2[ln(t/Q2
0)]

−2 is obtained, which is in agree-
ment with the QCD counting rule.

The current induced form factors F1, F2 for the modes
studied here can be related to the nucleon (Sachs) mag-
netic and electric form factors GM,E, as shown in Table 1,
where we also give the SU(3) decomposition of gA and gP
in terms of the form factors DA,P and FA,P. The F1 + F2
terms are in fact obtained by using

DV = −3
2

Gn
M, FV = Gp

M +
1
2

Gn
M, (11)

with SU(3) decompositions similar to that of gA,P. We can
decompose fS similarly into DS and FS, with (compare
(8))

DS =
mB − mB′

mq − mq′

(
−3

2
Fn

1

)
,
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Table 1. Relations of baryon form factors F1 + F2, gA and gP

with the nucleon magnetic form factors Gp,n
M , DA,P and FA,P

via the (s̄u)V,A,P operators. Replacing Gp,n
M by Gp,n

E in the
second column, one obtains F1 + F2 t/(mB + mB′)2

BB
′

F1 + F2 gA, P

Λ p̄ −
√

3
2 Gp

M − 1√
6

(D + 3F )A,P

Σ0 p̄ −1√
2

(Gp
M + 2 Gn

M) 1√
2

(D − F )A,P

Σ− n̄ −(Gp
M + 2 Gn

M) (D − F )A,P

Ξ0 Σ+ Gp
M − Gn

M (D + F )A,P

Ξ− Σ0 1√
2

(Gp
M − Gn

M) 1√
2

(D + F )A,P

Ξ− Λ
√

3
2 (Gp

M + Gn
M) − 1√

6
(D − 3F )A,P

FS =
mB − mB′

mq − mq′

(
F p

1 +
1
2

Fn
1

)
. (12)

From the factorization assumption and Table 1, we ex-
pect

B(Λ p̄ π+) ∼ 2 B(Λ p̄ π0),
B(Σ− n̄ π+) ∼ 2 B(Σ− n̄ π0) ∼ 2 B(Σ0 p̄ π+)

∼ 4 B(Σ0 p̄ π0),

B(Ξ0 Σ+ π+) ∼ 2 B(Ξ0 Σ+ π0) ∼ 2 B(Ξ− Σ0 π+)

∼ 4 B(Ξ− Σ0 π0). (13)

There are considerable data on the nucleon magnetic
form factors. This allows us to make a fit [7]:

Gp
M(t) =

5∑
i=1

xi

ti+1

[
ln
(

t

Λ2
0

)]−γ

,

Gn
M(t) = −

2∑
i=1

yi

ti+1

[
ln
(

t

Λ2
0

)]−γ

, (14)

where

γ = 2.148 ,

x1 = 420.96 GeV4 ,

x2 = −10485.50 GeV6 ,

x3 = 106390.97 GeV8 ,

x4 = −433916.61 GeV10 ,

x5 = 613780.15 GeV12 ,

y1 = 292.62 GeV4 ,

y2 = −735.73 GeV6 ,

and Λ0 = 0.3 GeV. They satisfy QCD counting rules and
describe time-like electromagnetic data such as e+e− →
NN suitably well. The data are extracted by assuming
|Gp

E| = |Gp
M| and |Gn

E| = 0 (which gives a better fit
compared to the |Gn

E| = |Gn
M| case [15]). With the fit

of (14), the time-like G
p (n)
M is real and positive (nega-

tive) [16,17]. It is interesting to note that the fit coeffi-
cients xi alternate in sign, and likewise for the yi. Just

two terms suffice for the latter because the neutron mag-
netic form factor data are relatively sparse [7]. Accord-
ing to perturbative QCD [18], asymptotically (t → ∞)
one expects Gn

M/Gp
M = −2/3. We find that the fitted

parameters for Gn
M with the |Gn

E| = 0 assumption give
Gn

M/Gp
M → −y1/x1 = −0.70, which is within 5% of the

QCD expectation. Note that, by use of GM = F1 + F2
and asymptotically F2/F1 → 1/t → 0, we have Fn

1 /F p
1 →

Gn
M/Gp

M → −2/3 as well.
The F2 term can be related to (GE − GM)/[t/(mB +

mB′)2 − 1]. However, we do not have many data on the
time-like nucleon GE. Thus, we concentrate on the F1+F2
term in (4) as we did in [7,10]. We also use GM in place of
F1 in (8) and (12). The effect of the F2 (or equivalently the
GE − GM) contribution can be estimated by using form
factor models such as vector meson dominance (VMD),
where both GE and GM are available.

The time-like form factors related to DA, FA are not
yet measured, but, as pointed out in [9], their asymptotic
behavior at t → ∞ are known [19] and useful. Asymptoti-
cally, they can be described by two form factors, depend-
ing on the reacting quark having parallel or anti-parallel
spin with respect to the baryon spin [19]. By expressing
these two form factors in terms of Gp,n

M as t → ∞, one has

DA → Gp
M +

3
2

Gn
M, FA → 2

3
Gp

M − 1
2

Gn
M. (15)

In a similar fashion, in the asymptotic region the fS and
gP form factors for the chirality flip operators S and P can
be expressed by just one form factor, with the spin of the
interacting quark parallel to the baryon spin. Anti-parallel
spin corresponds to an octet–decuplet instead of an octet–
octet baryon pair. Since gP (equivalently DP, FP) and
fS are related to the same form factor, by following the
approach of [19], as shown in Appendix A, we have

gP → fS,
DP (S)

FP (S)
→ 3

2
, (16)

as t → ∞. This is a non-trivial requirement and it is not
obeyed by (10). We note that (16) is obtained without
the use of the equation of motion. The requirement of
DS/FS → 3/2 is consistent with (12), which follows from
(8) by using Fn

1 /F p
1 → Gn

M/Gp
M → −2/3 asymptotically

[18]. Thus, the use of the equation of motion for fS in (8)
is consistent with the asymptotic relations in (16).

The asymptotic relations hold for large t, hence they
imply relations on the leading terms of the corresponding
form factors. In general, more terms would be needed. In
analogy to the case of the neutron magnetic form factor,
we express DA,P, FA,P up to the second term [10],

DA(t) ≡
(

d̃1

t2
+

d̃2

t3

)[
ln
(

t

Λ2
0

)]−γ

,

FA(t) ≡
(

f̃1

t2
+

f̃2

t3

)[
ln
(

t

Λ2
0

)]−γ

,

DP(t) ≡
(

d̄1

t2
+

d̄2

t3

)[
ln
(

t

Λ2
0

)]−γ

,
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FP(t) ≡
(

f̄1

t2
+

f̄2

t3

)[
ln
(

t

Λ2
0

)]−γ

. (17)

The asymptotic relations of (15) and (16) imply d̃1 = x1−
3 y1/2, f̃1 = 2 x1/3+y1/2, d̄1 = (3y1/2)[(mB−mB′)/(mq−
mq′)] and f̄1 = (x1−y1/2)[(mB−mB′)/(mq −mq′)], while
further information is needed to determine d̃2, f̃2, d̄2 and
d̄2, as we will discuss in the next section. We note that
the anomalous dimensions of gP and fS may not be the
same as that of F1,2 and gA. However, their effect is log-
arithmic, and hence is not very important, and we apply
the anomalous dimension of F1 to the other ones for sim-
plicity.

It is useful to compare with [10,9] for the treatment of
gP(t) (or equivalently on hA(t)), namely (10). As a work-
ing assumption, this form of gP(t) with the m2

GB/(mq +
mq′) factor was useful in particular for the good behav-
ior of the pseudoscalar matrix element in the chiral limit.
However, it may be too restrictive in three aspects: gP(t) ∝
gA(t), which is too strong an assumption; the appearance
of the Goldstone boson pole in the time-like form factors,
although mGB is way below baryon pair threshold; and a
1/t3 asymptotic behavior, rather than the 1/t2 form as ex-
pected from QCD counting rules. Ultimately, it does not
satisfy the asymptotic relation of (16). We have improved
on these points in our present treatment of gP(t).

3 Results

It is straightforward to use (2) to calculate B → Λ p̄ π and
similar rates.

Before we start, let us first specify the parameters used.
We take φ3 (or γ) = 60◦ [20] and the central values of |Vcb|
and |Vub| from [21]. We use mu(d)/ms = 0.029 (0.053),
ms = 120 MeV and mb = 4.88 GeV at µ = 2.5 GeV [21,
22]. The B → π transition form factor is given in [23].
For the effective Wilson coefficients, we use a1 = 1.05,
a4 × 104 = −387.3 − 121i and a6 × 104 = −555.3 − 121i
from [24] with Nc = 3.

Following [10], we use the axial vector contribution
to B0 → D∗− p n̄ decay to constrain f̃2 and d̃2. Since
there is no scalar and pseudoscalar contribution in this
tree dominated mode, we simply use the chiral limit form
of hA(t) = −gA(t) (mp + mn)2/t. The gP contribution
is suppressed by the quark–baryon mass ratio. We up-
date our previous calculation [7] using the present in-
put parameters, finding the vector part of the branch-
ing ratio to be BV (D∗− p n̄) = 11.9 (aeff

1 /0.85)2 × 10−4,
where the same aeff

1 value as in [25] is used. To reach the
central value of the measured rate B(B0 → D∗− p n̄) =
(14.5+3.4

−3.0 ± 2.7) × 10−4 [1], using d̃2 + f̃2 = −956 GeV6 1,
we find BA(D∗− p n̄) = 2.6 (aeff

1 /0.85)2 × 10−4 from the

1 By correcting a code error in [10], we can reproduce [25]
the BA(D∗ p n̄) result by using their d̃2 + f̃2 value determinded
form the D0 p p̄ rate. We do not use the D0 p p̄ mode to fit the
form factor parameters, since it is more complicated than the
D∗ p n̄ mode

Table 2. Branching fractions for BB
′
π+ modes arising from

the vector and scalar parts (BV), and from the axial and pseu-
doscalar parts (BA). The latter are given for the two cases
of using the asymptotic gP (d̄2 = f̄2 = 0) or the fitted gP

(d̄2 = f̄2 = −952 GeV6) from the Λ p̄ π rate. The branching
fraction is a simple sum of the two, i.e. B = BV + BA. The
rates for the BB

′
π0 modes are about one half of those shown

Modes BV(10−6) BA(10−6)
use asymptotic gP use fitted gP

Λ p̄ π+ 0.13 7.97 3.84
Σ0 p̄ π+ 0.88 0.70 0.70
Σ− n̄ π+ 1.79 1.41 1.41
Ξ0 Σ+ π+ 0.17 2.23 1.20
Ξ− Σ0 π+ 0.09 1.14 0.63
Ξ− Λ π+ 0.15 0.38 0.20

axial current. Although the value of d̃2 + f̃2 is about half
of what was used in [10,25], the change only affects the
branching ratios of the charmless modes studied here at
the 10−8 level. Following [10], we use d̃2 = f̃2.

With the axial contribution fixed, and with the scalar
and vector contribution related by the equation of motion
(12) we give in Table 2 the vector plus scalar contribution
(BV) and the axial plus pseudoscalar contribution (BA)
to the B0 → BB

′
π+ branching ratios. For BA, we show

two cases with either vanishing or non-vanishing d̄2 and
f̄2 from the pseudoscalar form factor, which is yet to be
fixed. Since the contribution from the vector plus scalar
part does not interfere with the axial plus pseudoscalar
part, the branching fraction is a simple sum of the two,
i.e. B = BV + BA, just as for B0 → D∗− p n̄. By using the
relation of (3), B(BB

′
π0) can be read off from Table 2 by

a simple factor 1/2.
We find BV (Λ[Σ0] p̄ π+) = 0.13 [0.88] × 10−6. We note

that BV (Λ p̄ π+) is consistent with previous studies [10,9],
while BV (Σ0 p̄ π+) becomes slightly larger because of the
different input values of the neutron magnetic form factor
parameters yi. Clearly, the BV(Λ p̄ π+) part is still an order
of magnitude below the measured [11] branching ratio of
(1). Before invoking the pseudoscalar form factor of (17),
let us make sure that other modifications are insufficient
for the order of magnitude difference.

Recall that in the vector and scalar sector, we concen-
trated on the F1 +F2 contributions without including the
GE − GM effect since GE data are unavailable. As noted
earlier, one can try to estimate the GE − GM effect by
using some form factor model where both GE and GM are
given. We use a VMD model [16], which was discussed
in our previous work [7]. Since FΛp̄

1 (t) and FΛp̄
2 (t) can be

expressed in terms of Gp
M and Gp

E, and since the VMD
model describes the Gp

M data better than Gn
M (time-like)

data [16], perhaps the Λ p̄ π+ mode may be a better place
to estimate the GE − GM effect. By incorporating VMD
with the previous section (following a similar approach as
in [7]), we obtain BV(Λ p̄ π+) = 0.27 × 10−6. Although
we gain by a factor of two compared to Table 2, the ef-
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Fig. 1. a dB(Λ p̄ π+)/dmΛp̄ spectrum, where a solid (dashed) line is for using the fitted (asymptotic) gP of d̄2 = f̄2 =
−952 GeV6 (0); b dB(Σ N̄ π+)/dmΣN̄ spectra, where the solid (dotted) line is for Σ0p̄ (Σ−n̄). The plots for π+ replaced by π0

are expected to be similar but a factor of 2 lower

fect is still of order 10−7, and is insufficient to account for
the measured Λ p̄ π+ rate. The effect of GE − GM is not
likely to fill the gap between BV(Λ p̄ π+) and the measured
B(Λ p̄ π+).

We thus need to turn to the axial and pseudoscalar
contributions. Let us start by using only the d̄1 and f̄1
terms of gP determined by the asymptotic relation of (16),
i.e. taking d̄2 = f̄2 = 0. It is remarkable that, as given in
the first case for BA in Table 2 (column three), the 1/t2

terms of DP and FP alone give B(Λ p̄ π+) ∼ 8 × 10−6,
overshooting the experimental value by a factor of two!
This is striking compared with the previous calculation
using the ansatz of (10), which gave results an order of
magnitude too small [10,9].

Now, we know that the sign of the xi and yi alternate;
hence GM gets reduced as higher power (in 1/t) terms are
included. We expect a similar effect for gP by allowing for
non-zero d̄2 and f̄2. We determine these coefficients (the
1/t3 terms) by fitting to the central value of the measured
Λ p̄ π+ rate. We obtain −(d̄2 + 3 f̄2)/

√
6 = 1554.6 GeV6,

which is displayed as the second case for BA in Table 2.
By assuming d̄2 ∼ f̄2, we have d̄2 ∼ −952 GeV6, which
has a sign opposite to d̄1, and is about twice the size of
d̃2 = f̃2 = −478 GeV6, the 1/t3 coefficients for the axial
vector form factor.

We show in Fig. 1a the Λ p̄ π+ decay spectrum. It is
interesting that the predicted spectra in both the d̄2 =
f̄2 = 0 and d̄2 = f̄2 = −952 GeV6 cases are close to the
data. The data suggest a curve between these two, which
conforms with our expectation that the third, 1/t4, term
would have the same sign as the 1/t2 term. In the future
as the measured spectrum is improved, one may in turn
use it to extract baryon time-like form factors.

While B(Λ p̄ π+) is enhanced from the previous results
[10,9] by using our new approach to the pseudoscalar gP
form factor, the enhancement in B(Σ0 p̄ π+) turns out to
be rather mild. This can be understood from the relative
weight of Λ versus Σ0 in (A.5) of Appendix A. We expect
B(Σ0 p̄ π+) = 1.6×10−6, which is within the present Belle
limit of B(Σ0 p̄ π+) < 3.8 × 10−6 at 90% confidence level
[11]. Furthermore, the SU(3) predictions of B(Σ− n̄ π+) ∼

2 B(Σ0 p̄ π+) and B(Ξ0 Σ+ π+) ∼ 2 B(Ξ− Σ0 π+) given in
Table 2 are easy to verify.

In Fig. 1b we plot the Σ0 p̄ π+ and Σ− n̄ π+ decay spec-
tra. The Σ0 p̄ π+ spectrum is close to our previous calcula-
tion in [10]. Since the corresponding SU(3) decomposition
for these two modes is DP −FP, the rates are not sensitive
to d̄2 and f̄2 being zero or finite, so long as they are not
too different from each other.

We show in Fig. 2 the Ξ0 Σ+ π+, Ξ− Σ0 π+ and
Ξ− Λ π+ decay spectra with d̄2 and f̄2 zero or finite.

We expect Figs. 1 and 2 to give also the spectra of the
modes with π+ replaced by π0, but with a factor of two
reduction in the rate from the isospin factor.

In these three-body modes quite often we have a Λ hy-
peron produced, which is well known to self-analyze its
spin upon decay and to provide useful information for
possible CP - and T -violation and chirality studies in B
decays [6,26]. Following [26], the angular distribution of
the cascade B → Λ p̄ π → π− p p̄ π decay can be written
as

d2Γ

dEΛd cos θ
=

1
2

dΓ

dEΛ
[1 + αΛ(EΛ) cos θ], (18)

where EΛ is the Λ energy measured in the B rest frame
and θ is the supplementary angle between the emitted pro-
ton momentum and the B momentum in the Λ rest frame.
We have αΛ(EΛ) = PΛ(EΛ) αΛ, where the Λ polarization
PΛ(EΛ) is given in Appendix B and αΛ = 0.642 ± 0.013
[21] is the well-measured Λ decay asymmetry parameter.

We show in Fig. 3 the asymmetry αΛ(EΛ) and the
dB(Λ p̄ π+)/dEΛ spectrum. The αΛ(EΛ) plot is similar
to the plot shown in [26] obtained by using some gen-
eral arguments. The negative αΛ(EΛ) corresponds to a
left-handed helicity dominated Λ in B decay. It is inter-
esting to note that although the decay rate is dominated
by the pseudoscalar term, we still have a polarized Λ. This
can be understood by noting that the ratio of scalar and
pseudoscalar contributions is roughly given by the aver-
aged f2

S/g2
P, which is about 0.1, while the polarization PΛ

is roughly given by the averaged −2fS gP/(f2
S + g2

P) ∼
−2fS/gP, which can be as large as −0.6. The sharp turn
of αΛ(EΛ) towards a much more negative value for EΛ >
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Fig. 2a,b. Solid, dashed and dotted lines are for dB(Ξ0 Σ+ π+)/dm
Ξ0 Σ+ , dB(Ξ− Σ0 π+)/dm

Ξ− Σ0 and dB(Ξ− Λ π+)/dmΞ− Λ,
respectively, for using a the asymptotic gP (d̄2 = f̄2 = 0), and b the fitted gP (d̄2 = f̄2 = −952 GeV6)
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Fig. 3. a αΛ(EΛ), b dB(Λ p̄ π+)/dEΛ spectrum, where the solid (dashed) line is for using the fitted (asymptotic) gP of
d̄2 = f̄2 = −952 GeV6 (0)

2.5 GeV is due to the fact that as EΛ increases, the phase
space quickly reduces to a high mΛp̄ region, resulting in
the approach of gP to fS and consequently the increase
in left-handed Λ polarization. It is well known that the Λ
spin is mainly carried by the s quark (as shown in (A.2))
and it is left-handed in the B → Λ p̄ π decay (as shown
in (2)). Therefore, a dominantly left-handed Λ reflects the
V –A nature of the weak interaction [26]. By comparing
Fig. 3a and b, we find −αΛ ∼ 0.2–0.3 for the main portion
of Λ p̄ π events. One should be able to check the sign of
this asymmetry experimentally in the near future.

4 Discussion and conclusion

Let us check the φ3 dependence of the modes consid-
ered here. For all modes, BV increases as we change φ3
from 60◦ to 90◦; on the other hand, BA increases for
Λ p̄ π, Σ N π and Ξ− Λ π, but decreases for Ξ0 Σ

+
π and

Ξ− Σ
0
π. However, the variations are at order 10−7 and

far less significant compared to the Kπ case [27]. Since
the a6 Vtb V ∗

ts terms dominate, we do not expect a strong
dependence on φ3 or Nc. Similarly, single term dominance
implies that direct CP -violation cannot be large; this is
found to be within +5% for all modes.

It is interesting to discuss the implication on p p̄ K and
p p̄ π modes calculated in [9,10]. First of all, the changes
are in the current-produced parts, whereas these modes
contain transition parts as well. In particular, the p p̄ π−
mode is transition dominated. From (9), we see that hA(t)
is close to its chiral limit form because the dependence on
gP is rather weak, and hA(t) for the present work is sim-
ilar to previous [9,10]. Therefore, the axial vector contri-
butions to the p p̄ K and p p̄ π modes are not affected. The
effect of gP only enters through the pseudoscalar term.
Since the pseudoscalar matrix element for B → p p̄ K de-
cay, 〈pp̄ |(s̄s)P|0〉 [10], is Okubo–Zweig–Iizuka (OZI) sup-
pressed, we do not expect much change in these modes.
On the other hand, for 〈pp̄ |(d̄d)P|0〉 of the p p̄ π− mode, by
using SU(3) and OZI arguments as in [10], it corresponds
to FP − DP and is non-negligible. However, this mode is
tree and transition dominant; hence we still do not expect
much change in the rate [10]. Note that the transition
form factor has a 1/t3 behavior. For large enough t, the
transition part is power suppressed. We thus expect to see
some 1/t2 contribution from the new gP term, resulting in
a slightly broader spectrum than previous [10].

In conclusion, we study decay rates and spectra of
B → Λ p̄ π, Σ0 p̄ π, Σ− n̄ π, Ξ0 Σ+ π, Ξ− Σ0 π and Ξ− Λ π
modes, and the Λ polarization in this work. By suitably in-
corporating the asymptotic behavior of the baryonic pseu-
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doscalar matrix element, we are able to obtain the Λ p̄ π+

rate (in part by a fit) and spectrum close to the exper-
imental measurements. The discrepancy between experi-
mental [11] and previous theoretical [9,10] results is per-
haps resolved. While the Λ p̄ π+ rate is enhanced from
the previous calculation, we expect B(Σ0 p̄ π+) = 1.6 ×
10−6, which is within the present experimental limit and
can be checked soon. Although the Λ p̄ π+ rate is dom-
inated by the pseudoscalar term, we still have Λ polar-
ized giving αΛ ∼ −(0.2–0.3). The impact on p p̄ K due
to the present treatment of the pseudoscalar form factor
is negligible, while we expect a slight broadening of the
p p̄ π− spectrum. Most of the subtleties in these modes
come from the axial and especially the pseudoscalar form
factors. Information on these form factors may be ob-
tained from studying these modes. However, the under-
lying factorization assumption needs to be checked sepa-
rately. It is interesting that factorization seems to work
in the B

0 → D+K−K0 and D∗+K−K0 modes, where
axial parts are absent and vector parts are known [28].
For these current-produced three-body baryonic modes,
we expect B(BB

′
π+) ∼ 2 B(BB

′
π0) as a consequence of

factorization, which does not depend on the complexity of
the baryonic form factors.
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Appendix

A Asymptotic relations
for the form factors fS and gP

We follow [19] to obtain the asymptotic relations for fS
and gP. The wave function of an octet baryon can be ex-
pressed as

|B ; ↑〉 ∼ 1√
3
(|B ; ↑↓↑〉 + |B ; ↑↑↓〉 + |B ; ↓↑↑〉), (A.1)

i.e. composed of 13-, 12- and 23-symmetric terms, respec-
tively. For B = p, n, Σ0, Λ, we have

|p ; ↑↓↑〉 =
[
d(1)u(3) + u(1)d(3)√

6
u(2)

−
√

2
3
u(1)d(2)u(3)

]
| ↑↓↑〉,

|n ; ↑↓↑〉 = (−|p ; ↑↓↑〉 withu ↔ d),

|Σ0 ; ↑↓↑〉 =
[
−u(1)d(3) + d(1)u(3)√

3
s(2)

+
u(2)d(3) + d(2)u(3)

2
√

3
s(1)

+
u(1)d(2) + d(1)u(2)

2
√

3
s(3)

]
| ↑↓↑〉,

|Λ ; ↑↓↑〉 =
[
d(2)u(3) − u(2)d(3)

2
s(1)

+
u(1)d(2) − d(1)u(2)

2
s(3)

]
| ↑↓↑〉, (A.2)

for the corresponding |B ; ↑↓↑〉 parts, while the 12- and
23-symmetric parts can be obtained by permutation. To
be consistent with the SU(3) decompositions of Table 1,
our Λ state has an overall negative sign with respect to
that of [19].

Following [19], we have

〈B(p)|O|B′(p′)〉 = ū(p)
[
1 + γ5

2
F+(t)

+
1 − γ5

2
F−(t)

]
u(p′),

F±(t) = e
(±)
‖ (O : B′ → B) F‖(t), (A.3)

in the large t limit. Quark mass dependent terms behave
like mq/

√|t| and are neglected. For simplicity, we illus-
trate the derivation of the asymptotic relations with the
space-like case.

The coefficients of F‖ for the O = q̄Lq′
R, q̄Lq′

R cases are
given by

e+
‖ (q̄Lq′

R : B′ → B)

= 〈B; ↓↓↑ |Q[q′(1, ↑) → q(1, ↓)]|B′ ; ↑↓↑〉
+〈B; ↑↓↓ |Q[q′(3, ↑) → q(3, ↓)]|B′ ; ↑↓↑〉,

e−
‖ (q̄Lq′

R : B′ → B) = 0,

e±
‖ (q̄Rq′

L : B′ → B) = e∓
‖ (q̄Lq′

R : B′ → B), (A.4)

where Q[q′(1(3), ↑) → q(1(3), ↓)] change the parallel spin
q′(1(3))| ↑〉 part of |B′; ↑↓↑〉 to a q(1(3))| ↓〉 part. It is
easy to see that flipping the anti-parallel spin | ↓〉 part of
|B′; ↑↓↑〉 to | ↑〉 will give a decuplet instead of an octet
state. Thus, we need to consider the parallel spin case
only. By using the above equations, it is straightforward
to obtain

e+
‖ (ūLdR : n → p) = −5

3
,

e+
‖ (ūLsR : Λ → p) =

√
3
2
,

e+
‖ (ūLsR : Σ0 → p) = − 1

3
√

2
. (A.5)

By using S, P = q̄Lq′
R ± q̄Rq′

L and (A.4), we have
e±
‖ (q̄q′ : B′ → B) = e+

‖ (q̄Lq′
R : B′ → B) and e±

‖ (q̄γ5q
′ :

B′ → B) = ±e+
‖ (q̄Lq′

R : B′ → B). Hence

fS = gP = e+
‖ (q̄Lq′

R : B′ → B) F‖, (A.6)

in the large t limit. In terms of DS(P) and FS(P), we have
fS(gP) = DS(P) + FS(P), −(DS(P) + 3FS(P))/

√
6, (DS(P) −
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FS(P))/
√

2 for the B′B = np, Λp and Σ0p cases, respec-
tively. Accordingly,

DS = DP = −F‖ , FS = FP = −2
3

F‖ , (A.7)

which implies (16).

B Decay rate and polarization formula

For a three-body B → hBB
′

decay, where h is a pseu-
doscalar meson and B, B

′
is a baryon–anti-baryon pair,

in general the amplitude can be written as

M
(
B → hBB

′)
=

GF√
2

{
A ū(pB) /phv(pB′) + B ū(pB) /phγ5v(pB′)

+ C ū(pB)v(pB′) + D ū(pB)γ5v(pB′)
}

. (B.1)

The decay rate is given by

dΓ =
1

(2 π)3
1

32 m3
B

(
Σλ1,2 |M|2

)
dm2

12 dm2
23 , (B.2)

where we call the baryon B particle 1, the anti-baryon B
′

particle 2 and the meson h particle 3, and λ1(2) = ±1 is
the helicity of the (anti-) baryon B (B

′
).

If the baryon B is in a definite helicity state, its spin
direction will remain the same in either the B meson or
its own rest frames. For the baryon B with energy E1
(measured in the B meson rest frame) the density matrix
in the spin (or helicity) space is given by

ρ(E1) =
1
2

[1 + PB(E1) p̂1 · σ] , (B.3)

where p̂1 is the unit vector pointing opposite to the di-
rection of the B meson momentum in the B baryon rest
frame and

PB(E1) =

∫
dm2

23 Σλ1,2(−)λ1 |M|2∫
dm2

23 Σλ1,2 |M|2 . (B.4)

It is straightforward to obtain

Σλ1,2 (−)λ1 |M|2

= G2
F 4
{

Re(A B∗)m1(2s1 · p3 p2 · p3 − m2
3 s1 · p2)

+Re (A D∗ − B C∗) m1m2 s1 · p3

+Re (A D∗ + B C∗) (s1 · p3 p1 · p2 − s1 · p2 p1 · p3)

−Re (C D∗) m1 s1 · p2

}
, (B.5)

Σλ1,2 |M|2

= G2
F 2
{[

|A|2(2p1 · p3 p2 · p3 − m2
3 p1 · p2 − m1m2m

2
3)

+2 Re (A C∗) (m1p2 · p3 − m2 p1 · p3)

+|C|2(p1 · p2 − m1m2)
]

+[A → B, C → D, m2 → −m2]
}

, (B.6)

where s1 is the helicity vector of the baryon B (spinor)
with λ1 = +1. It is easy to check that by neglecting m1
we have m1s1 → p1 and we obtain PB(E1) → −1 in the
fully left-handed chiral case (A ∼ −B and C ∼ D) as
expected from (B.1). In general, the polarization PB(E1)
can easily be evaluated in the B meson rest frame by using

s1 =
1

m1
√

(pB · p1)2 − m2
1m

2
B

(pB · p1 p1 − m2
1 pB), (B.7)

where pB is the momentum of the B meson, and the stan-
dard technique of expressing pB ·pi, pi ·pj in terms of m2

ij .
Given these formulas, the task is now reduced to extract
the A–D terms for the amplitude of interest.
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